Homeotic transformations of the axial skeleton that accompany a targeted deletion of E2f6.
نویسندگان
چکیده
E2F transcription factors play an important role in regulating mammalian cell proliferation. E2F6, the most recently identified E2F family member, is a transcriptional repressor. In an effort to ascertain the in vivo biological function of E2F6, we have generated an E2f6 mutant mouse strain. Mice lacking E2F6 are viable and healthy. Surprisingly, E2f6-/- embryonic fibroblasts proliferate normally. However, E2f6-/- animals display overt homeotic transformations of the axial skeleton that are strikingly similar to the skeletal transformations observed in polycomb mutant mice. This observation is compatible with the recent finding that endogenous E2F6 and one or more mammalian polycomb proteins are components of the same multiprotein complex. The accumulated evidence suggests that, during development, E2F6 participates in the recruitment of polycomb proteins to specific target promoters.
منابع مشابه
Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice.
In Drosophila, the trithorax-group and the Polycomb-group genes are necessary to maintain the expression of the homeobox genes in the appropriate segments. Loss-of-function mutations in those groups of genes lead to misexpression of the homeotic genes resulting in segmental homeotic transformations. Recently, mouse homologues of the Polycomb-group genes were identified including M33, the murine...
متن کاملHomeotic transformations of the axial skeleton of YY1 mutant mice and genetic interaction with the Polycomb group gene Ring1/Ring1A
Polycomb group (PcG) proteins participate in the maintenance of transcriptionally repressed state of genes relevant to cell differentiation. Here, we show anterior homeotic transformations of the axial skeleton of YY1(+/-) mice. We find that the penetrance of some of these alterations was reduced in mice that are deficient in the class II PcG gene Ring1/Ring1A, indicating a genetic interaction ...
متن کاملoto is a homeotic locus with a role in anteroposterior development that is partially redundant with Lim1.
Genetic control of mammalian head development involves mechanisms that are shared with trunk development as well as mechanisms that are independent. For example, mutations in the nodal gene disrupt axis formation and head development while mutations in the Otx2 or Lim1 genes block head development without disrupting development of the trunk. We show here that the oto mutation on mouse chromosom...
متن کاملGenetic interactions and dosage effects of Polycomb group genes in mice.
In Drosophila and mouse, Polycomb group genes are involved in the maintenance of homeotic gene expression patterns throughout development. Here we report the skeletal phenotypes of compound mutants for two Polycomb group genes bmi1 and M33. We show that mice deficient for both bmi1 and M33 present stronger homeotic transformations of the axial skeleton as compared to each single Polycomb group ...
متن کاملTargeted Deletion of Btg1 and Btg2 Results in Homeotic Transformation of the Axial Skeleton
Btg1 and Btg2 encode highly homologous proteins that are broadly expressed in different cell lineages, and have been implicated in different types of cancer. Btg1 and Btg2 have been shown to modulate the function of different transcriptional regulators, including Hox and Smad transcription factors. In this study, we examined the in vivo role of the mouse Btg1 and Btg2 genes in specifying the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 3 7 شماره
صفحات -
تاریخ انتشار 2002